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Green hydrogen and final uses

Nowadays, hydrogen is mainly produced from fossil fuels and is principally used in refining, chemical and steel industries [1].
To reduce carbon dioxide emissions, hydrogen can be generated by electrolysis powered with green energy. Green hydrogen has
an important potential in the process of scaling up renewable energy sources providing a long-term energy storage solution.
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Fig. 1. Electrolytic hydrogen production, with electricity from renewable energy sources, and potential end-uses [2].

[1] International Energy Agency. IEA Report, Global Hydrogen Review. 2023. Available online: https://www.iea.org/reports/global-hydrogen-
review-2023.

[2] Franco, A., & Giovannini, C. (2023). Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and
Perspectives. Sustainability, 15(24), 16917. https://doi.org/10.3390/su152416917
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Water electrolysis for hydrogen production: electrochemical model
The electrochemical model of electrolysis and the main correlations for energy analysis of electrolytic cells (Tab. 1) were identified.
Electrical and

1 Wh Wh Thermal Main Variables of Influence
LOW-TEMPERATURE ELECTROLYSIS | H200) = Hygg) +5 0z | | AH* =3947 7, AG" =327, = Demands
Liquid water/steam, operating
1 - - U, temperature, pressure, water activity
HIGH-TEMPERATURE ELECTROLYSIS | Ha0(g) — Hyg) +50(g) | | 8H° =333, AG° =315 - (Nernst Equation)
- - v Half-reactions, catalysts, operating
T act temperature, pressure, current density
AH = AG+T-AS | Total energy demand Operating temperature, pressure, current
density, components’ materials,
Amount of  AG = 7. F . Uy, Wherez=2is the number of moles of electrons (e”) transferred N’ ohm morphology, and dimensions, thus
electrical work per mole of H, and F=96,485.3 C/mol.. is the Faraday constant

electrical and ionic conductivity, gases’
bubbles, components’ assembly

AG i
U,ey = —— Reversible voltage Uin =——= | Thermoneutral voltage Opera‘Flng tempera’ture, Pressure, curre’nt
z:F z-F density, products’ removal rate, gases
v bubbles, electrolyte ion
Operational ;v v N conc concentration/ionic conductivity,
cell votrage @1~ “rev T M act™ 1 ohm™ 11 conc electrodes’ porosity, and ionic
conductivity
o , , , , , Operating temperature, thermal source of
Activation overpotential Ohmic overpotential Concentration overpotential Process heat,

rocess heat, heat transfer mechanisms,
steam (only SO P

. : . . components’ conductive, convective, and
Fig. 2. Main constant values and equations for water electrolysis. technology)
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From: Franco, A., & Giovannini, C. (2023). Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and
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Water electrolysis for hydrogen production: main technologies

Low-temperature technologies have an average electricity consumption of around 55-60 kWh per kg of hydrogen, while the
leading high-temperature technology may reduce the electrical consumption to about 40-42 kWh/kg,,,.
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Fig. 3. Simplified alkaline electrolysis cell. Fig. 4. Proton exchange membrane cell. Fig. 5. Solid oxide electrolysis cell.
Tab. 2. Main advantages and disadvantages of water electrolysis technologies.
Alkaline technology Proton exchange membrane technology Solid oxide technology
Main Well-tested technology; Lower Higher current density; Smaller volume; Heat | Higher electrical efficiency; RES- or industrial
Advantages | costs; Condensation recovery. recovery from cooling. waste-heat usable; Reversible devices.

Corrosive electrolyte; H,
purification necessary; Lower
current density; Bigger Volume.

Main
Disadvantages

Higher costs; Greater water requirement; Smaller Thermal energy needed (steam); Long
application experience. warming up; Limited lifetime.

From: Franco, A., & Giovannini, C. (2023). Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and
Perspectives. Sustainability, 15(24), 16917. https://doi.org/10.3390/su152416917
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Water electrolysis: energy analysis at cell, stack and system level

A first analysis based on mass and energy balances (in blue boxes) at cell, stack (N cells in series) and system level of electrolysis
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From: Franco, A., & Giovannini, C. (2023). Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and
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Storage of hydrogen in compressed gaseous form at ambient temperature

Multistage compression with intercooling for storage of hydrogen in compressed gaseous form at ambient temperature was
investigated. The storage pressures (p) of interest range from 2 to 100 MPa. Assuming a constant value of isentropic efficiency
(n;,) for all the stages, the specific compression work was minimized as the storage pressure and the number of stages vary with

constraints on the pressure ratio and the maximum temperature reached in compression. When compressing H, produced at

atmospheric pressure, the optimized work is 8-9% of the hydrogen energy content for industrial storage (p,,=20-30 MPa).
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Fig. 8. Zone of interest (green box) for the storage of H, in

compressed gaseous form at ambient temperature.

From: Franco, A.; Giovannini, C. Hydrogen Gas Compression for Efficient Storage: Balancing Energy and Density. Under review.



Storage of hydrogen in compressed gaseous form at ambient temperature

The value of the hydrogen production pressure, the isentropic efficiency and the ambient temperature were varied to estimate
the change in the optimum work of compression. For industrial applications (p,,=20-30 MPa), large electrolysers producing
hydrogen at 3 MPa can reduce compression work by 60-65%, compression stages from 5 to 3, and the maximum temperature
reached in compression by about 50 °C.
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From: Franco, A.; Giovannini, C. Hydrogen Gas Compression for Efficient Storage: Balancing Energy and Density. Under review.



Hydrogen uses in hard-to-abate industrial sectors
Some examples of hard-to-abate industries include iron and steel, cement, chemicals, paper and glass production. In the
chemical, petrochemical and steel sectors, hydrogen is already used as a feedstock or process agent. Hydrogen can also be used
as an alternative fuel in high-temperature processes. An estimate was made of the non-renewable primary energy savings
achievable through the blended combustion of hydrogen and natural gas (Tab. 5).
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Fig. 11. CO, emitted by hard-to-abate industries in 2022.

From: Franco, A., & Giovannini, C. (2023). Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy
Transition. Energies, 16(16), 6098. https://doi.org/10.3390/en16166098
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Hydrogen uses in steel production
In steel production, hydrogen is evaluated as an alternative fuel (e.g., in blast furnaces, hot finishing and reheating furnaces) and
as a reducing agent in the H,-based Direct Reduced Iron process. In the latter case, around 60 kg of H, are necessary per tonne of

crude steel produced, therefore over 3 MW of low-temperature electrolysers would be needed to produce 1 tonne/h of crude
steel. The energy requirement of the main steel production routes was reconstructed and compared with the literature (Tab. 6).
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Tab. 6. Summary of average energy requirements of
the steel production technologies analyzed.
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Fig. 12. Scheme of steel production by main process routes.
From: Franco, A., & Giovannini, C. (2023). Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy
Transition. Energies, 16(16), 6098. https://doi.org/10.3390/en16166098

Downstream

Electric Arc Furnace

En.ergy Share of
Process Type Requirement Electricity
[G)/tonne]
Blast Furnace — Basic 18-22 <5%
Oxygen Furnace
Natural gas-based
Direct Reduced Iron — 14-18 13-17%
Electric Arc Furnace
Hydrogen-based
Direct Reduced Iron — 15-18 90-94%
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Conclusions and future activities

The electrical efficiency of water electrolysis is around 60% for low-
temperature technologies and about 80% for high-temperature
technologies. Further improvements are needed in the performance,
lifetime extension and flexibility to operating conditions of electrolysers,
also with a view to integration with renewable energy sources.

Storage of hydrogen in compressed gaseous form at ambient temperature
can be achieved with energy requirements around or below 10% of the
Lower Heating Value of hydrogen.

The uses of hydrogen in hard-to-abate industries as an alternative fuel or
process agent are under experimentation and have great potential for
dercabonization.

The research will be continued on the use of hydrogen as an alternative fuel
in hard-to-abate industrial sectors and on electrolytic hydrogen production.
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