

INNOVATIVE SOLUTIONS FOR HEAT EXCHANGE AND HEAT RECOVERY IN ADVANCED CYCLES

HIGH

EFFICIENCY

ELECTRICITY

GENERATION

HEAT RECOVERY

MAXIMISATION

REDUCTION OF

GREENHOUSE

GAS EMISSION

"A TECHNICAL ANALYSIS OF THE ALLAM CYCLE"

Ph.D IN ENERGY, SYSTEMS, TERRITORY AND CONSTRUCTION ENGINEERING XXXVII° CYCLE 2022-2023

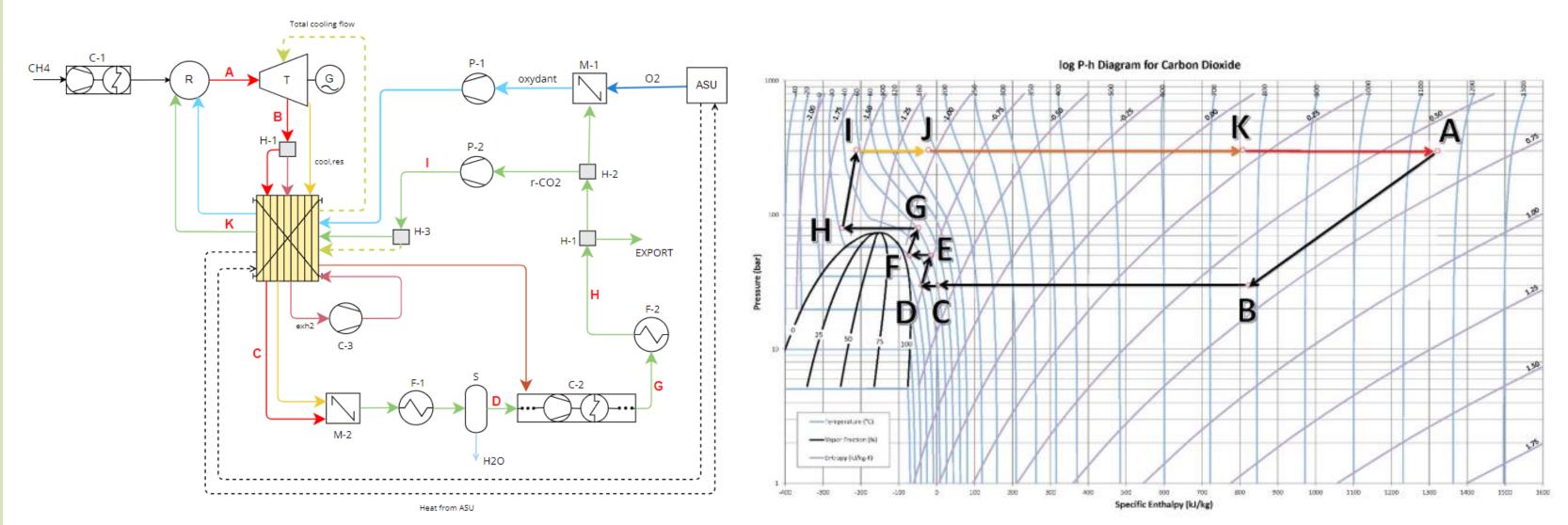
PhD student:

Dago Gnandjuet Gaston Brice

Supervisors: Desideri Umberto; Ferrari Lorenzo

I) Research Interests and Objectives

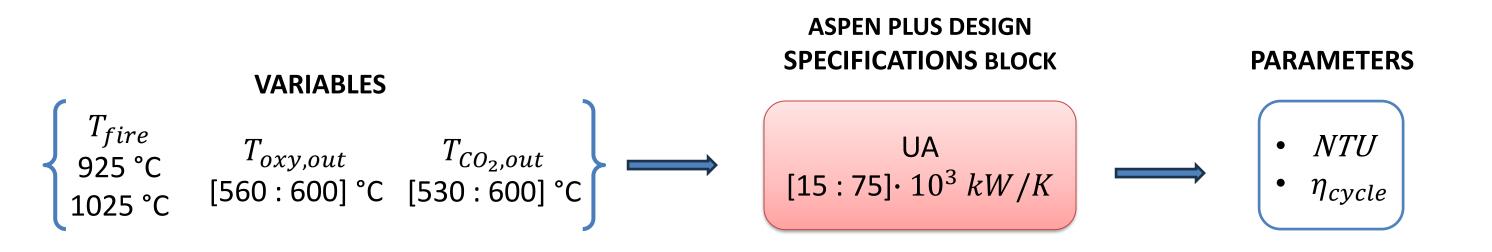
III) Methods and Materials **PART 1: SENSITIVITY ANALYSIS** MODEL **NEW TECHNOLOGIES ASPEN PLUS DESIGN** • sCO₂ as working fluid SPECIFICATIONS BLOCK TURBINE PARAMETERS INTEGRATED CCS SYSTEMS sCO_2 export at liquid state (*m*_{exh} • Using printed circuit heat stato \dot{m}_{int} SUSTAINABLE ENERGY PRODUCTION $T_{exh} = [575:595]^{\circ}C$ $\dot{m}_{int};\dot{m}_{exh}$ exchangers (PCHE)¹ \dot{m}_{char} = [50 : 135] kg/s ADVANCED SOLUTIONS FOR HEAT EXCHANGE $\eta_{is};\eta_{cycle}$ m_{cool,res}


□ PART 2: RECUPERATOR DESIGN

ALLAM CYCLE

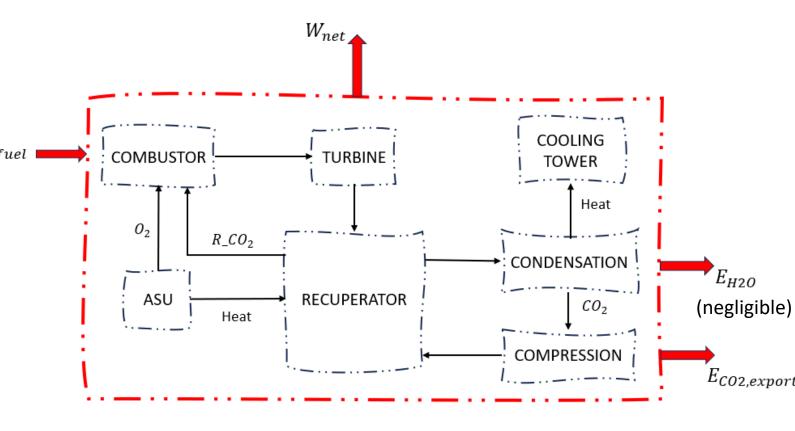
Research activities focus on metodology for ALLAM cycle critical iusses finding and technicques for cycle efficency improvement

II) Introduction

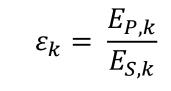

ALLAM is a novel **oxy-combustion cycle** that employs high-pressure supercritical CO_2 as working fluid to reduce emissions and allow the CO_2 capture. Pure methane is considered as fuel.

Cycle complexity and critical issues have been addressed by means of the following studies :

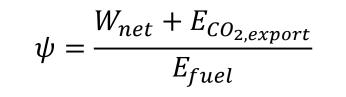
> Preliminary sensitivity analysis of the turbine cooling flows and outlet temperature is needed to pinpoint how the system reacts to their variation. Both analyses have been performed for a fixed turbine inlet temperature due to restriction on material maximum allowable stress;


The recuperator design has been computed considering two turbine inlet temperature

□ PART3: EXERGY ANALYSIS


Exergy analysis was performed for the two temperature cases studied in the second part, with their corresponding optimal recuperator dimensions.

Control region

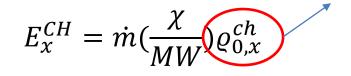


• From the first and second law of thermodynamic $\dot{E}_x = \sum_j \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \dot{W} + \sum_i \dot{m}_i e_i - \sum_e \dot{m}_e e_e$ $E_{i}^{tot} - E_{e}^{tot} - E_{D} = E_{S,k} - E_{P,k} - E_{D} = 0$

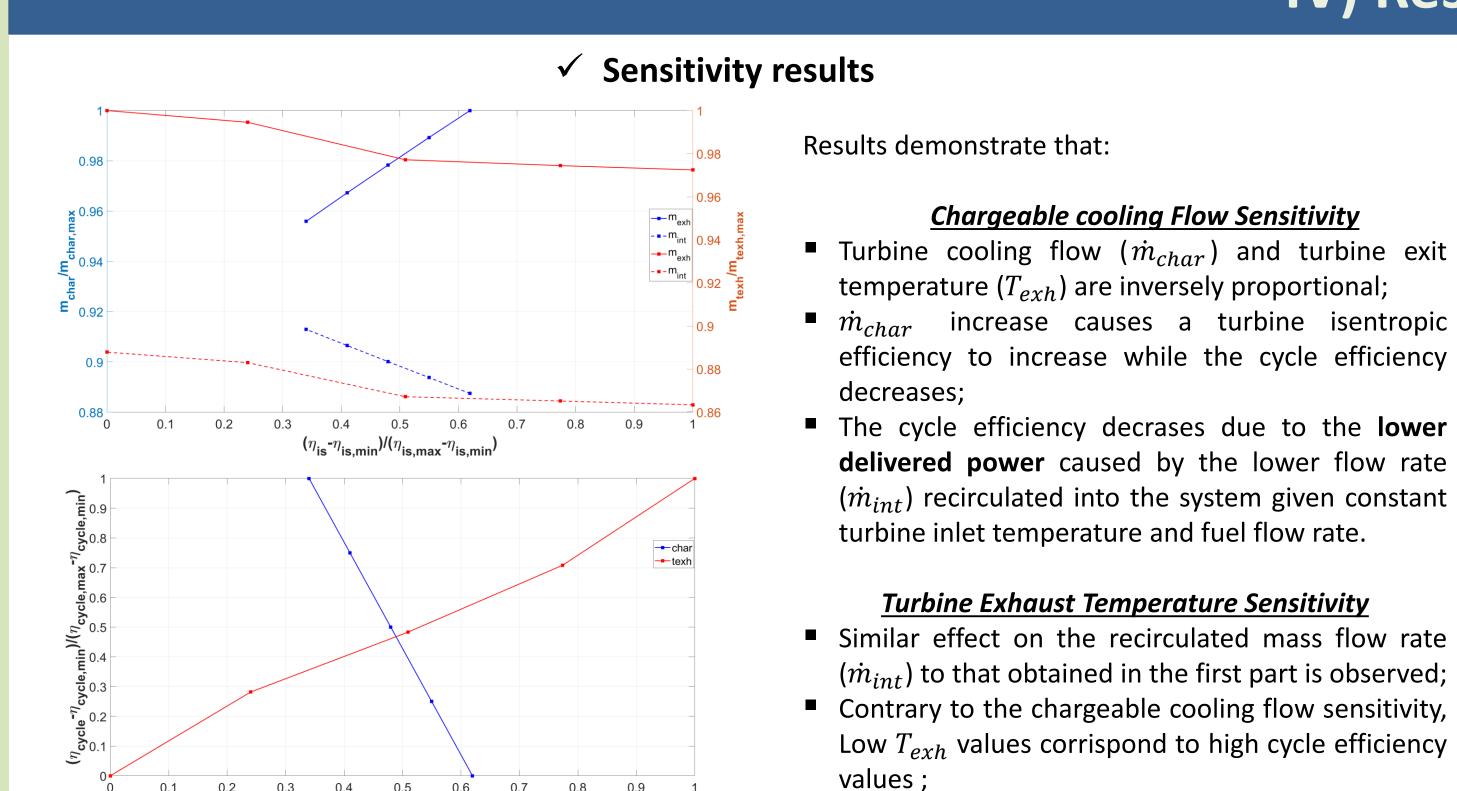
k-th component exergy efficiency

• Overall exergy efficiency

where E_{CO_2} and E_{fuel} are given by their physical and

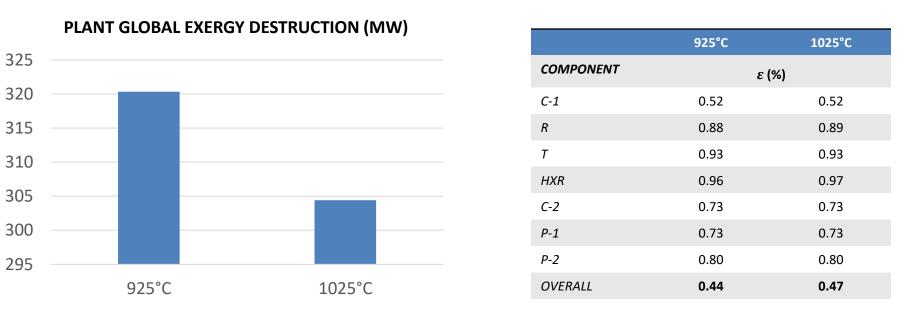

- A recuperator design to determine the dimensions that allow the best trade-off between the maximum recoverable heat and the cycle efficiency;
- > An exergy analysis to identify the sources of the cycle's thermodynamic inefficiencies at the component level.

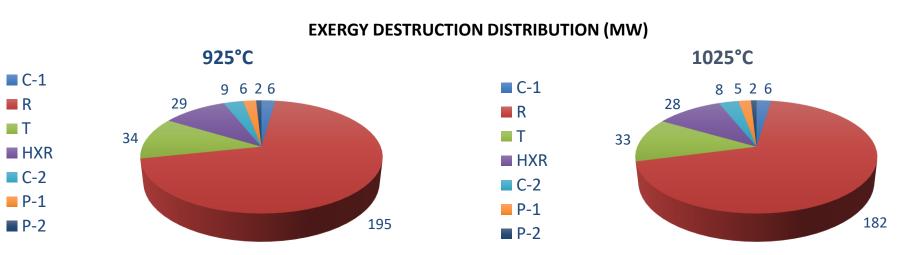
COMPONENT	E_D	3
TURBINE	$(E_i - E_e) - W_t$	$W_t/(E_{in}-E_{out})$
COMPRESSOR/ PUMP	$W_{c/p}$ -(E_e - E_i)	$(E_{out}$ - $E_{in})/W_{c/p}$
COMBUSTOR	$(E_i + E_{fuel}) - E_e$	$E_e/(E_i+E_{fuel})$
HEAT EXCHANGER	$\sum E_i$ - $\sum E_e$	$\sum E_e / \sum E_i$


chemical parts

Chemical exergy

standard chemical exergy²


i = *inlet*; *e* = *outlet*; *D* = *destroyed*; *S* = *supplied*; *P* = *producted*



IV) Results and Discussions

✓ Exergy Results

- Graphs show that the lower the turbine inlet temperature, the higher the global exergy destruction;
- According to the exergy destruction distribution, the combustor is the main source of irreversibilities of the system, within which more than 30% of the supplied exergy is destroyed;

<mark>२</mark>0.8 **×** 0.7 **9**.0 **9** 0.4 ອັ0.3 **0**.2 රි 0.1 ද

- NTU
- Cycle efficiency trend is the same for both cases;
- As expected, the higher the turbine inlet temperature, the higher the cycle efficiency;
- A recuperator with NTU = 27 is set to be the best trade-off between the global cycle efficiency and the recuperator dimensions (costs).
- ●925°C --1025°C

\dot{m}_{char} increase;	T_{exh} decrease	
T _{exh} decrease;	\dot{m}_{char} = cst	

decrement is generated by a larger turbine isentropic efficiency than that obtained with the \dot{m}_{char} variation.

• The difference is due to the fact that T_{exh}

Turbine Exhaust Temperature Sensitivity

Chargeable cooling Flow Sensitivity

• **Turbine and recuperator rank second and third**, respectively, in terms of exergy destruction, even though their exergy efficiencies are relatively high.

VI) Plan Continuation

Cooling flow usage improves the turbine performance but needs to be moderated to avoid negative effects on the overall cycle efficiency;

Large recuperator dimensions are required to enhance the maximum power elaborated by the cycle;

V) Findings

✓ Aside from the combustor, the turbine and recuperator are the main sources of the Allam cycle inefficiencies.

The topic deserves further study:

- ✓ Different Allam cycle layout evaluation for reducing key components losses;
- A rigorous recuperator design: either hydraulic or mechanical.

Contacts

Dago Gnandjuet Gaston Brice DESTeC, University of Pisa, L.go Lucio Lazzarino 1, 56122, Pl gnandjuet.dago@phd.unipi.it +39 3512010945

References

- 1. D. Shiferaw, J. M. Carrero, and R. Le Pierres, "Economic analysis of SCO2 cycles with PCHE recuperator design optimisation," 5th Int. Symp. - Supercrit. CO2 Power Cycles, pp. 1–13, 2016.
- 2. T. J. Kotas, The exergy method of thermal plant analysis, vol. 16, no. 1. 1988.
- 3. R. Allam et al., "Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture," Energy Procedia, vol. 114, no. November 2016, pp. 5948–5966, 2017, doi:
- 4. M. Penkuhn and G. Tsatsaronis, "Exergy Analysis of the Allam Cycle," 5th Int. Symp. Supercrit. CO2 Power Cycles, pp. 1–18, 2016.