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ALLAM is a novel oxy-combustion cycle that employs high-pressure supercritical CO, as working fluid to 1025 °c  [°60:600]°C [530:600]°C x[ ] / - . nc”"le)
reduce emissions and allow the CO, capture. Pure methane is considered as fuel.
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pinpoint how the system reacts to their variation. Both analyses have been performed for a fixed

turbine inlet temperature due to restriction on material maximum allowable stress; where Eco, and Eyy; are given by their physical and
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» An exergy analysis to identify the sources of the cycle’s thermodynamic inefficiencies at the component
level.
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i = inlet; e = outlet; D = destroyed; S = supplied; P = producted

V) Results and Discussions

= As expected, the higher the turbine inlet
temperature, the higher the cycle efficiency;

= A recuperator with NTU = 27 is set to be the best
trade-off between the global cycle efficiency and
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(m;y¢) to that obtained in the first part is observed;
" Contrary to the chargeable cooling flow sensitivity,
Low T,,j values corrispond to high cycle efficiency
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= Graphs show that the lower the turbine inlet temperature, the higher the
global exergy destruction;
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V) Findings VI) Plan Continuation

The topic deserves further study:
v' Cooling flow usage improves the turbine performance but needs to be moderated to avoid negative effects on P y

the overall cycle efficiency;
v’ Large recuperator dimensions are required to enhance the maximum power elaborated by the cycle;
v' Aside from the combustor, the turbine and recuperator are the main sources of the Allam cycle inefficiencies.

v’ Different Allam cycle layout evaluation for reducing key components losses;

v' Arigorous recuperator design: either hydraulic or mechanical.
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