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Abstract INTRODUCTION

Energy storage technologies can improve the reliability and the stability of a system with an
increasing renewable energy integration, smoothing out the fluctuations in the production, and by
load-shifting.

* This research focuses on developing innovative methodologies for programming, managing, and
controlling energy networks containing storage systems to facilitate the integration of RES.

* Through techno-economic assessments and mathematical optimization we aim to evaluate the
potential role of redox flow batteries, a promising technology for renewable energy storage, due to
their scalability, long lifespan, and versatility.

 (Capital and levelized costs are evaluated for the Vanadium Redox Flow Battery (VRFB) and the

To evaluate the possible role that Redox Flow Batteries (RFBs) can play in the energy
sector, we conduct a bottom-up techno-economic analysis of different types of RFBs, first
by assessing capital and levelized storage costs, and then by modelling these batteries in
real-case scenarios, assessing revenue streams derived from the optimal dispatch of wind
energy. Results show that, in terms of capital and levelized costs, Aqueous Organic Redox
Flow Batteries (AORFBs) have higher projected costs on average than state-of-the-art
Vanadium Redox Flow Batteries (VRFBs), although indicated in literature as a promising
low-cost and environmentally safe alternative to inorganic flow batteries, due to cheap
electrolyte active materials. The investigation of the optimal use of flow batteries along
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too high for effective deployment for energy arbitrage and balancing services. e Then mathematical optimization techniques are employed to determine the optimal size,

configuration and scheduling of a VRFB along with a lithium-ion batteries in a hybrid battery system,
for a Danish case.
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