13 novembre 2019 XXXII Ciclo di Dottorato Department of Energy, Systems, Territory and Construction Engineering (DESTeC) University of Pisa

Università di Pisa

SEISMIC RISK MANAGEMENT IN HISTORIC CENTRES. Integrated large-scale modelling for a scenario-based methodology

PhD candidate Francesca Giuliani

Supervisorsdr. eng. Anna De Falco
prof. eng. Valerio Cutini

• INTRODUCTORY OVERVIEW OF THE PROBLEM:

Problem definition Research objectives and design

• STATE OF THE ART:

Risk assessment, risk management and earthquakes Large-scale vulnerability assessment: from the built environment to the road network Spatial analysis

• METHODOLOGY:

Screening phase: territorial-level investigations Development phase: local-level investigations

RESULTS AND DISCUSSION

Territorial-level investigations : 9 historic centres Local-level investigastions: 1 historic centre

O CONCLUSION AND FUTURE DEVELOPMENTS

INTRODUCTION

3 | 19

Problem definition

RISK ASSESSMENT

R=f(Hazard, Vulnerability, Exposure)

MAIN CHALLENGES

- Historic centres present high vulnerability and high exposure
- Vulnerability assessment hindered by the «aggregate effect» and the lack of detailed large-scale knowledge on historical buildings
- Lack of data regarding the real exposure (population, visitors, tourists, and value of cultural assets)
- Not possible to intervene on the whole historic centre, namely the built environment and the road network
- Lack of coordination between experts and disciplines

METHODOLOGY

Objectives and research methodology

TO PROPOSE AN INTEGRATED METHODOLOGY FOR THE DEVELOPMENT OF A SEISMIC RISK MANAGEMENT PLAN IN ITALIAN HISTORIC CENTRES

Key principles:

- 1. BALANCE PRESERVATION AND SAFETY THROUGH PREVENTION
- 2. PLAN INTERVENTIONS AND PRIORITIZE PREVENTION MEASURES
- 3. STRENGTHEN THE CONNECTION BETWEEN EMERGENCY AND PREVENTION
- 4. INCLUDE THE PROCESS OF HUMAN EVACUATION INTO THE EMERGENCY PLANNING

STATE OF THE ART

Risk assessment, risk management and earthquakes

RISK ASSESSMENT R=f(Hazard, Vulnerability, Exposure)

RISK MANAGEMENT 4 phases

SEISMIC RISK MANAGEMENT IN ITALY National Seismic Prevention Programme

- Improvement of the technical-scientific **knowledge** (seismology, earthquake engineering, any earthquake-related subject);
- Reduction of the **vulnerability** and **exposure** (no intervention on seismic hazard) during **prevention**;
 - Mitigation of the effects (**preparation** and **response** phases), namely all the efforts to foster the culture of civil protection and rise awareness on risks.

Disaster Risk Management Cycle (DRMC)

STATE OF THE ART

Large-scale vulnerability: from the built environment to the road network

STATE OF THE ART

Spatial analysis

- It is a set of techniques for **representation**, **quantification** and **interpretation** of **spatial configuration**
- \circ $\;$ Mutated from the Network Analysis and the Graph Theory

DEGREE CENTRALITY

$$C_{D}(v) = \deg(v)$$

$$|C_{D}(n)| = \frac{\sum_{i=1}^{n} [C_{D}(v^{*}) - C_{D}(v_{i})]}{\max \sum_{i=1}^{n} [C_{D}(v^{*}) - C_{D}(v_{i})]}$$

 \mathbf{V}_1

$$d_{i,j} = \text{distance between } v_i \in v_j, i \neq j$$
$$C_C(j) = \frac{1}{\sum_j d_{i,j}} \qquad |C_C(j)| = \frac{N-1}{\sum_j d_{i,j}}$$

BETWEENNESS CENTRALITY

$$\sigma_{i,j} = \text{number of geodesics tra } v_i e v_j, i \neq j$$

$$C_B(k) = \sum_{i < j} \frac{\sigma_{i,j}(k)}{\sigma_{i,j}} \quad |C_B(k)| = \frac{\sum_{i < j} \frac{\sigma_{i,j}(k)}{\sigma_{i,j}}}{H}$$

$$H_{directed} = (n-1)(n-2)$$

$$H_{undirected} = \frac{(n-1)(n-2)}{2}$$

TERRITORIAL-LEVEL: METHODOLOGY

Screening phase: analysis, comparison and synthesis

a. URBAN VULNERABILITY

Object: historical system Method: Pressure And Release (PAR) model

b. URBAN MORPHOLOGY

THREATS

Object: built environment

Method: Process typological analysis

- Settlement > block > district
- Compactness: SI
- Size: A_{HC}

c. URBAN CONFIGURATION

Object: open spaces

Method: spatial analysis

- Angular Segment Analysis
- Connectivity (degree centrality)
- Choice (betweenness centrality)
- Integration (closeness centrality)
- Redundancy: \bar{C}
- **Distribution: v**

TERRITORIAL-LEVEL: RESULTS I

Case studies: 9 historic centres

Certaldo

Chianni

Lucignano

Pontremoli

Poppi

Vinci

Volterra

Lari

2

3

4

5

6

7

8

9

9

19

I TERRITORIAL-LEVEL: RESULTS

Sample results

ID	Historic centre	Territorial location	Nucleus type
1	Certaldo	low hill	village
2	Chianni	high hill	village
3	Casciana Terme Lari	low hill	village
4	Lucignano	high hill	proto-urban
5	Pontremoli	high valley	urban
6	Poppi	high hill	proto-urban
7	San Gimignano	high hill	urban
8	Vinci	low hill	proto-urban
9	Volterra	high hill	urban

CERTALDO

Connectivity

Choice

TERRITORIAL-LEVEL: CONCLUSIONS

OVERALL CONCLUSIONS	0	Great variety in the characteristics of historic centres Comparative measures of historic centres: compactness, size, redundancy, distribution
QUALITATIVE URBAN VULNERABILITY	0	Set of mitigation measures > starting point for local-level strategic planning
URBAN MORPHOLOGY	0	Identify the most ancient areas > address local-level surveys

SPATIAL ANALYSIS

- Identify centralities
- Common features:
 - higher connectivity next to gateways in walled cities
 - integration and choice are higher next to public or religious buildings

10

 no correspondence between emergency land uses and centralities

I LOCAL-LEVEL: METHODOLOGY

Development phase

OBJECTIVES

- Interdisciplinary methodology to develop DRM plans for historic centres
- Combination of **functional**, **vulnerability** and **spatial analyses** > **scenarios**

STEPS

1. Extensive data collection and intensive survey

- Methods and tools:
- a. Survey form (fieldwork)
- b. GIS mapping (pre- and post-fieldwork)
- c. Photogrammetry (fieldwork and post-fieldwork)

1. Elaboration of data and definition of the database

- Methods and tools:
- a. Database architecture
- b. GIS mapping

2. Analytical investigations

- Methods:
- a. LCE
- b. Vulnerability Index Method for masonry façades
- c. Spatial analysis, Angular Segment Analysis
- 3. Definition and analysis of scenarios (emergency, damage and accessibility)
- 4. Combination of scenarios

Step 1: extensive data collection and intensive survey

LUCIGNANO

- Province of Arezzo, Tuscany
- 43°16′28.3″N
 11°44′45.65″E
- \circ Property: 61563 m²
- Population: 479 inhab.
- Seismic zone: 3

13 | 19

Step 1: extensive data collection and intensive survey

290 FACADES

<u>15 | 19</u>

Steps 2: elaboration of data and definition of the database

237

Legend

Buildings analysis

- Residential/annex
- Tourism
- ≣Unused

Annex
Irregular block
Isolated
Linear building
Regular block
Row building
Specialistic 206

■Tower

Steps 3a and 4a: functional analysis and emergency scenario

Steps 3b and 4b: vulnerability analysis and damage scenarios

Steps 3c and 4c: spatial analysis and inaccessibility scenarios

 (\bullet)

Scenario 0: Present-day

Scenario 1: Emergency services

Scenario 2: Vulnerable categories

Scenario 3: Highest connectivity

Scenario 4: Damage of buildings

Steps 5: combination of results

COEFFICIENT OF IMPORTANCE (45-th percentile)

INTERVENTION PRIORITIES

RESEARCH CONCLUSIONS

- Lack of preventive planning into Italian historic centres and lack of man-environmental considerations in emergency plans
- This work proposed an integrated methodology to contribute to seismic DRM management by combining multiple disciplines and different approaches with the objective to improve the capacity of the urban system to cope with the event.

MAIN CONCLUSIONS:

- o cross-disciplinary and cross-sectorial approach to risk management in historic centres is possible
- o contextual knowledge plays a key role
- the integrated multi-step scenario-based methodology has potential for scale-up and replication

FUTURE DEVELOPMENTS:

- Evaluate multi-hazard scenarios
- Include data regarding the exposure by means of statistical data from conventional sources and big data from emerging sources
- Implementation on a wider set of case studies
- Numerical explorations on the seismic response of SAs to identify interventions
- Behavioural aspects of pedestrian evacuation simulations